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Approach to cloud computing…         without servers…           with servers
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What is serverless computing?
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traditional cloud computing setting

1. Writes the application code

2. Manages the cloud infrastructure
a. operating system
b. firewall
c. load balancer
d. web server
e. file server

• security
• fault tolerance
• resource allocation
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• cloud infrastructure is completely hidden
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serverless computing setting

• security
• fault tolerance
• resource allocation
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1. Writes a “serverless function”

• cloud infrastructure is completely hidden
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serverless function invoker

serverless computing setting

+

web requests

serverless 
function

serverless 
function

serverless 
function

cloud provider’s infrastructure 
is elastic and volatile

• function instances 
start and stop to 
meet demands



1. Idempotent (tolerant to re-execution)

2. Transient in-memory state

3. Short-lived

4. Consume limited memory
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entry point

sending out a request

returning a response 
containing census data

cloud provider’s infrastructure 
is elastic and volatile
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Performance experiment

exports.hello = (req, res) => {
   res.send('Hello World!');
 };

cold start

• Hosted on
• Requests sent from 10 open connections

for 30 seconds
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Performance experiment

exports.hello = (req, res) => {
   res.send('Hello World!');
 };

cold start

1 Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural Implications of Function-as-a-Service Computing. In IEEE/ACM 
International Symposium on Microarchitecture (MICRO).

1. Significant cold starts
(> 10x exec time for short functions) 1

2. Slowdown from containerization
(up to 20x slowdown from native exec) 1

• Hosted on
• Requests sent from 10 open connections

for 30 seconds



• Type system with memory safety guarantees
– no dangling pointers
– no use-after-frees
– no undefined behavior

• A serverless platform that runs Rust functions? 2

• Can run multiple functions in one process using language-based isolation
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Rust as an alternative

2 Sol Boucher, Anuj Kalia, David G Andersen, and Michael 
Kaminsky. 2018. Putting the “Micro” back in microservices. In 
USENIX Annual Technical Conference (ATC).



• Difficult to learn for the average web programmer

• Programmers might not be looking to learn a new language

• Does not prevent:
– CPU monopolization
– deadlocks
– memory leaks
– …
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Rust as an alternative

How do we remedy this?
      … Containerless!



1. Containerless overview

2. Building traces

3. Functions

4. Evaluation
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Containerless

• “Serverless function accelerator” that seeks to improve performance

• Uses language-based isolation when possible, and container-based isolation if 
necessary

• Prevents CPU monopolization and places memory limits

★ can use language of choice
★ benefit from lower response latency

★ benefit from lower resource utilization
★ can share idle resources across all customers



Containerless

• Transforms JavaScript to Rust by means of a trace-based representation

• Traces are built incrementally at runtime, and feature the possibility of unknown 
behavior

• Employs the Rust type system to ensure memory-safety (language-based isolation)

• Uses container-based isolation as a safefall
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invoker

web requests

Containerless

unknown behavior
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container-based isolation language-based isolation

Containerless

invoker
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container-based isolation language-based isolation

+

requestrequest request

Containerless

invoker



16

container-based isolation language-based isolation

+

requestrequest request

Containerless

invoker
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container-based isolation language-based isolation

+

compile to

requestrequest request

Containerless

invoker
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container-based isolation language-based isolation

requestrequest request

Containerless

invoker
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container-based isolation language-based isolation

requestrequest request

Containerless

invoker or exceeds CPU or 
memory limit

this is ok because 
of idempotency



1. Containerless overview

2. Building traces

3. Functions

4. Evaluation
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Building Traces

• We want to build execution traces incrementally at runtime

• We want the ability to express unknown execution paths

• Thus, we create a trace language and build traces at runtime

• Simplified subset:
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Trace State

• We want to build execution traces incrementally at runtime

• We need a mechanism of tracing the currently executing statement

• Thus, we introduce the trace state (c)

• When tracing begins, we initialize the trace state to the unknown statement

• Example trace states:
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Trace Context

• We need a mechanism of identifying our current position in the trace

• We need the ability to merge traces from multiple executions

• Thus, we introduce the trace context (κ)

• Simplified subset:

• a trace context (κ) is a representation of a trace with a “hole”

 trace context ≠ evaluation context

if we are currently 
executing+tracing this part

then this is the 
current trace context

conditional false branch
previous 
context



trace context (κ) trace state (c)
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x = 5
x = -5

(“unknown”)(“empty”)



trace context (κ) trace state (c)
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(“unknown”)(“empty”)
x = 5
x = -5

false branch



trace context (κ) trace state (c)
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(“unknown”)(“empty”)
x = 5
x = -5



trace context (κ) trace state (c)
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(“unknown”)(“empty”)
x = 5
x = -5



trace context (κ) trace state (c)
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(“unknown”)(“empty”)
x = 5
x = -5



trace context (κ) trace state (c)
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(“unknown”)(“empty”)
x = 5
x = -5



trace context (κ) trace state (c)
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(“unknown”)(“empty”)
x = 5
x = -5
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Trace Compiler + Runtime System

compiler

• Trace compiler instruments calls to a trace-building runtime system

• The example simplifies things a bit

• Alternative approach: modify node interpreter to build traces

runtime system
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Trace-to-Rust Compiler

compiler

• Resolves mismatch issues between traces and Rust

• JavaScript has garbage collection and Rust does not, so we add arena allocation

• Traces allow variable aliasing and Rust does not, so we
wrap variables in a container type with dynamic ownership rules

• Traces are dynamically typed and Rust is statically typed, so we
inject all values into a dynamic type

this is ok because 
serverless functions 
tolerate transient 

memory



1. Containerless overview

2. Building traces

3. Functions

4. Evaluation
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Tracing Functions

• User-defined functions are difficult to translate to Rust directly, because of Rust’s lifetime 
and ownership rules

• We eliminate functions by introducing an expression that represents a function 
environment and by introducing addresses

• We inline function application
using labels and breaks



• The trace context is expanded to include named values (function application):
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Tracing Functions

variable name previous context

desugaring to ANF
+

compiler
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compiler

+
trace building

1. We eliminate functions using:
a. expression that represents a function environment
b. addresses

2. We in-line function application using:
a. labels and breaks
b. shadow argument stack that tracks the

traced representations of function arguments
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compiler

+
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b. shadow argument stack that tracks the

traced representations of function arguments



1. We eliminate functions using:
a. expression that represents a function environment
b. addresses

2. We in-line function application using:
a. labels and breaks
b. shadow argument stack that tracks the

traced representations of function arguments
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compiler

+
trace building
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container-based isolation language-based isolation

+

requestrequest request

Containerless

invokertrace building happens here



1. Containerless overview

2. Building traces

3. Functions

4. Evaluation
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Evaluation

authorize

• 6 benchmarks

• Each evaluated with requests from 10 concurrent open connections for 60 seconds
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Evaluation

authorize

• 6 benchmarks

• Each evaluated with requests from 10 concurrent open connections for 60 seconds

compiling to Rust

start using Rust
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authorize banking

status

autocomplete

maze upload
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maze

JavaScript’s array versus Rust’s Vec
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Summary

• Serverless function accelerators can better performance without burdening programmers

• Language-based isolation achieves better performance, but must be combined with other 
safety measures

• Containerless uses trace-based
compilation to compile JavaScript to Rust

authorize


