
A Language-based Serverless Function Accelerator
Emily Herbert

Approach to cloud computing… without servers… with servers

2

What is serverless computing?

3
traditional cloud computing setting

1. Writes the application code

2. Manages the cloud infrastructure
a. operating system
b. firewall
c. load balancer
d. web server
e. file server

• security
• fault tolerance
• resource allocation

4

1. Writes a “serverless function”

• cloud infrastructure is completely hidden

1. Manages the cloud infrastructure
a. operating system
b. firewall
c. load balancer
d. web server
e. file server

serverless computing setting

• security
• fault tolerance
• resource allocation

• security
• fault tolerance
• resource allocation

1. Writes a “serverless function”

• cloud infrastructure is completely hidden

5

serverless function invoker

serverless computing setting

+

web requests

serverless
function

serverless
function

serverless
function

cloud provider’s infrastructure
is elastic and volatile

• function instances
start and stop to
meet demands

1. Idempotent (tolerant to re-execution)

2. Transient in-memory state

3. Short-lived

4. Consume limited memory

6

entry point

sending out a request

returning a response
containing census data

cloud provider’s infrastructure
is elastic and volatile

7

Performance experiment

exports.hello = (req, res) => {
 res.send('Hello World!');
 };

cold start

• Hosted on
• Requests sent from 10 open connections

for 30 seconds

8

Performance experiment

exports.hello = (req, res) => {
 res.send('Hello World!');
 };

cold start

1 Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural Implications of Function-as-a-Service Computing. In IEEE/ACM
International Symposium on Microarchitecture (MICRO).

1. Significant cold starts
(> 10x exec time for short functions) 1

2. Slowdown from containerization
(up to 20x slowdown from native exec) 1

• Hosted on
• Requests sent from 10 open connections

for 30 seconds

• Type system with memory safety guarantees
– no dangling pointers
– no use-after-frees
– no undefined behavior

• A serverless platform that runs Rust functions? 2

• Can run multiple functions in one process using language-based isolation

9

Rust as an alternative

2 Sol Boucher, Anuj Kalia, David G Andersen, and Michael
Kaminsky. 2018. Putting the “Micro” back in microservices. In
USENIX Annual Technical Conference (ATC).

• Difficult to learn for the average web programmer

• Programmers might not be looking to learn a new language

• Does not prevent:
– CPU monopolization
– deadlocks
– memory leaks
– …

10

Rust as an alternative

How do we remedy this?
 … Containerless!

1. Containerless overview

2. Building traces

3. Functions

4. Evaluation

11

12

Containerless

• “Serverless function accelerator” that seeks to improve performance

• Uses language-based isolation when possible, and container-based isolation if
necessary

• Prevents CPU monopolization and places memory limits

★ can use language of choice
★ benefit from lower response latency

★ benefit from lower resource utilization
★ can share idle resources across all customers

Containerless

• Transforms JavaScript to Rust by means of a trace-based representation

• Traces are built incrementally at runtime, and feature the possibility of unknown
behavior

• Employs the Rust type system to ensure memory-safety (language-based isolation)

• Uses container-based isolation as a safefall

13

invoker

web requests

Containerless

unknown behavior

14

container-based isolation language-based isolation

Containerless

invoker

15

container-based isolation language-based isolation

+

requestrequest request

Containerless

invoker

16

container-based isolation language-based isolation

+

requestrequest request

Containerless

invoker

17

container-based isolation language-based isolation

+

compile to

requestrequest request

Containerless

invoker

18

container-based isolation language-based isolation

requestrequest request

Containerless

invoker

19

container-based isolation language-based isolation

requestrequest request

Containerless

invoker or exceeds CPU or
memory limit

this is ok because
of idempotency

1. Containerless overview

2. Building traces

3. Functions

4. Evaluation

20

21

Building Traces

• We want to build execution traces incrementally at runtime

• We want the ability to express unknown execution paths

• Thus, we create a trace language and build traces at runtime

• Simplified subset:

22

Trace State

• We want to build execution traces incrementally at runtime

• We need a mechanism of tracing the currently executing statement

• Thus, we introduce the trace state (c)

• When tracing begins, we initialize the trace state to the unknown statement

• Example trace states:

23

Trace Context

• We need a mechanism of identifying our current position in the trace

• We need the ability to merge traces from multiple executions

• Thus, we introduce the trace context (κ)

• Simplified subset:

• a trace context (κ) is a representation of a trace with a “hole”

 trace context ≠ evaluation context

if we are currently
executing+tracing this part

then this is the
current trace context

conditional false branch
previous
context

trace context (κ) trace state (c)

24

x = 5
x = -5

(“unknown”)(“empty”)

trace context (κ) trace state (c)

25

(“unknown”)(“empty”)
x = 5
x = -5

false branch

trace context (κ) trace state (c)

26

(“unknown”)(“empty”)
x = 5
x = -5

trace context (κ) trace state (c)

27

(“unknown”)(“empty”)
x = 5
x = -5

trace context (κ) trace state (c)

28

(“unknown”)(“empty”)
x = 5
x = -5

trace context (κ) trace state (c)

29

(“unknown”)(“empty”)
x = 5
x = -5

trace context (κ) trace state (c)

30

(“unknown”)(“empty”)
x = 5
x = -5

31

Trace Compiler + Runtime System

compiler

• Trace compiler instruments calls to a trace-building runtime system

• The example simplifies things a bit

• Alternative approach: modify node interpreter to build traces

runtime system

32

Trace-to-Rust Compiler

compiler

• Resolves mismatch issues between traces and Rust

• JavaScript has garbage collection and Rust does not, so we add arena allocation

• Traces allow variable aliasing and Rust does not, so we
wrap variables in a container type with dynamic ownership rules

• Traces are dynamically typed and Rust is statically typed, so we
inject all values into a dynamic type

this is ok because
serverless functions
tolerate transient

memory

1. Containerless overview

2. Building traces

3. Functions

4. Evaluation

33

34

Tracing Functions

• User-defined functions are difficult to translate to Rust directly, because of Rust’s lifetime
and ownership rules

• We eliminate functions by introducing an expression that represents a function
environment and by introducing addresses

• We inline function application
using labels and breaks

• The trace context is expanded to include named values (function application):

35

Tracing Functions

variable name previous context

desugaring to ANF
+

compiler

36

compiler

+
trace building

1. We eliminate functions using:
a. expression that represents a function environment
b. addresses

2. We in-line function application using:
a. labels and breaks
b. shadow argument stack that tracks the

traced representations of function arguments

37

compiler

+
trace building

1. We eliminate functions using:
a. expression that represents a function environment
b. addresses

2. We in-line function application using:
a. labels and breaks
b. shadow argument stack that tracks the

traced representations of function arguments

1. We eliminate functions using:
a. expression that represents a function environment
b. addresses

2. We in-line function application using:
a. labels and breaks
b. shadow argument stack that tracks the

traced representations of function arguments

38

compiler

+
trace building

39

container-based isolation language-based isolation

+

requestrequest request

Containerless

invokertrace building happens here

1. Containerless overview

2. Building traces

3. Functions

4. Evaluation

40

41

Evaluation

authorize

• 6 benchmarks

• Each evaluated with requests from 10 concurrent open connections for 60 seconds

42

Evaluation

authorize

• 6 benchmarks

• Each evaluated with requests from 10 concurrent open connections for 60 seconds

compiling to Rust

start using Rust

43

authorize banking

status

autocomplete

maze upload

44

maze

JavaScript’s array versus Rust’s Vec

45

Summary

• Serverless function accelerators can better performance without burdening programmers

• Language-based isolation achieves better performance, but must be combined with other
safety measures

• Containerless uses trace-based
compilation to compile JavaScript to Rust

authorize

