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Stochastic discrete-event simulation

• Improves design and operation of complex engineered systems

• Simulation tools can help specify the simulation model structure

• Modeling simulation inputs remains as a challenging task
– particularly for non-experts

• Our goal is to facilitate this process via automation



• Data for fitting distributions traditionally is expensive and painful to 
collect

• So, a modeler typically imposes strong simplifying assumptions

• But, these assumptions can pose their own challenges
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Input modeling is challenging



Assume the interarrival times to a 
system are independent and 
identically distributed (i.i.d.)
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Input modeling is challenging

Sacrifice fidelity when capturing 
complex distribution features 

(e.g. multimodality)
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Input modeling is challenging

Fit an empirical distribution

The data values that can be produced in a 
simulation run are strictly limited to 

those in the available data

Assume the interarrival times to a 
system are independent and 
identically distributed (i.i.d.)



Input modeling is challenging

• Sometimes a modeler cannot make such simplifying assumptions

• So, they might try different strategies
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Input modeling is challenging

The interarrival sequence is not 
well modeled as a sequence of 

i.i.d. random variables

Choose between many possible 
models for autocorrelated, possibly 

non-stationary interarrival sequences

time-series models
direct point process models 

of arrival times
(Cox and Isham 1980)

ARIMA

GARCH SETAR

Lots of choices and
no software guidance



Input modeling is challenging

Use input traces for general 
stochastic processes

The data values that can be produced in a 
simulation run are strictly limited to 

those in the available data

Introduces privacy issues
when deployed
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The interarrival sequence is not 
well modeled as a sequence of 

i.i.d. random variables



• But… data is becoming ubiquitous

• And… we observe that neural networks are a powerful tool for learning 
complex patterns from data in data-rich environments

• Neural networks are promising for:
– automating the tasks of learning simulation input distributions
– generating samples from these distributions during simulation runs
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Input modeling is challenging



• Framework for automated modeling and generation of simulation input 
distributions

• Uses generative neural networks (GNNs)

• Learns a complex statistical distribution without overfitting

• Provides a means of sampling from the distribution

10

Neural Input Modeling (NIM)



• Seeks to resolve...
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Neural Input Modeling (NIM)

Sacrifice fidelity when capturing 
complex distribution features

The data values that can be produced in a 
simulation run are strictly limited to 

those in the available data

Lots of choices and
no software guidance

Introduces privacy issues
when deployed
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NIM-VL

+Variational Autoencoder LSTM layers

• NIM prototype!

• Captures complex stochastic input processes and simulates them

• Neural network of the form:



• Learn features from the training data

• Generate new synthetic data using these learned features

• Generating synthetic faces, music, and sentences

• Learn simulation input distributions and generate 
synthetic stochastic processes
(e.g. an interarrival sequence)
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Generative Neural Networks (GNNs)
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• Type of GNN

• Learn a deterministic function from the training data that allows samples 
from a known distribution to be transformed to samples of the target, 
unknown distribution
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Variational Autoencoders (VAEs)

(Doersch ’16)

samples from a 
gaussian distribution

the same samples 
mapped through
g(z) = z/10 + z/||z||

VAE learns function g



• Uses a pair of networks - an encoder E and a decoder D
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encoder decoder

input vector x output vector y

Variational Autoencoders (VAEs)

“reparameterization”



• Goals:
(i) Given i.i.d N(0,1) random variables z, the decoder will produce 

such that y will be distributed as a sample from the target distribution

(ii) The encoder will produce          such that z will be distributed from N(0,1)
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Variational Autoencoders (VAEs) “Designed with generation in mind”
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Variational Autoencoders (VAEs)

• During generation:
– The decoder transforms stochastic z from N(0,1) such that y will be distributed as a 

sample from the target distribution

• Generates data that will be distributed as a sample from the target 
distribution
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Variational Autoencoders (VAEs)
• During training:

– Assume t arrivals in a day. Observe:

– Learns to stochastically encode x into z (i.i.d. N(0,1))

– Learns to decode z (i.i.d. N(0,1)) into y (reconstructing x)

– Loss:
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Variational Autoencoders (VAEs)

minimize KL-divergence between 
z values and N(0,1)
(regularization term)

maximize Log-Likelihood 
between jointly distributed 

normal samples from the decoder
(reconstruction term)
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NIM-VL

+Variational Autoencoder LSTM layers

• NIM prototype!

• Captures complex stochastic input processes and simulates them

• Neural network of the form:

Generate data that will be distributed as a 
sample from the target distribution



• Type of recurrent neural network (RNN)

• Forms a memory of past inputs and concisely captures temporal 
patterns

• Uses a series of repeating cells and hidden inputs

• Typically used as a single layer in a larger network
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Long Short-Term Memory networks (LSTMs)
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Long Short-Term Memory networks (LSTMs)

x1 from input vector x

hidden state cell state

internal cell operations

one cell

repeat with t cells



• NIM prototype!

• Captures complex stochastic input processes and simulates them

• Neural network of the form:
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NIM-VL

+Variational Autoencoder LSTM layers

Form a memory of past inputs and 
concisely capture temporal patterns

Generate data that will be distributed as a 
sample from the target distribution
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NIM-VL at a glance

+Variational Autoencoder LSTM layers

Assists the 
LSTM in the 

decoderone LSTM layer 
in encoder one LSTM layer 

in decoder

VAE architecture
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Training
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Training
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Training
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Training
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Training

KL-Divergence
(regularization term)

minimize this

Log-Likelihood
(reconstruction term)

maximize this
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Generating sample paths
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Generating sample paths
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Generating sample paths



33

Generating sample paths
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Encoder

LSTM layer

“fully connected”
layers
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Decoder



1. Train on n sample paths, each of length t

2. Generate m sample paths, each of length s

3. Use generated sample paths in simulation
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Ok, but how do I actually use it?



• Goals:
– Assess NIM-VL’s ability to accurately capture complex input processes
– Assess practicality of generation speed

• Experiments:
– ARMA/ARMA mixture
– NHPP
– Queueing simulation
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Selected Experiments



• Consider a mixture {Xi}i≥1 of two nonstationary ARMA(2,2) processes 
{Ai}i≥1 and{Bi}i≥1

• Standard Gaussian innovations

• Both processes in run parallel: at time i, we set Xi=Ai with probability 
0.5 and otherwise set Xi=Bi

• The parameters of the two processes are (0.95, −0.1; 0.2, 0.95) and
(0.8, −0.3; 0.3, 0.7)
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Nonstationary ARMA/ARMA mixture process



• NIM-VL was trained on 10,000 ground truth sample paths, each of 
length 100

• NIM-VL is then used to generate 10,000 NIM-VL sample paths, each of 
length 100

• These NIM-VL sample paths are compared against 10,000 validation 
ground truth sample paths
(distinct from training data)
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Nonstationary ARMA/ARMA mixture process



• Absolute difference in empirical correlation coefficients

• The largest absolute correlation
difference value is 0.0609

40

Nonstationary ARMA/ARMA mixture process



• Rate function

• Ground truth data is generated via thinning (Lewis and Shedler 1979)

• 10,000 sample paths, t = 100
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Nonhomogenous Poisson process (NHPP)



• The largest absolute correlation
difference value is 0.0550
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Nonhomogenous Poisson process (NHPP)



• Empirical arrival rate function compared to
ground truth

1. Compute the sequence of arrival times by taking partial sums of 
interarrival times

2. Divide the interval [0,100] into subintervals of length 0.2

3. Compute the average number of arrivals in each subinterval, where the 
average was taken over the 10,000 sample paths
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Nonhomogenous Poisson process (NHPP)



• Empirical arrival rate function compared to
ground truth

• Indicates good agreement
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Nonhomogenous Poisson process (NHPP)



• Using NIM-VL to simulate the average waiting time           of the first 
100 jobs in an NHPP/Gamma/1 FIFO queue

• Interarrival time process is NHPP

• Service times are i.i.d. Gamma (1.2, 0.4)

• Training with 1,000 sample paths with t = 50
– (simulating t = 100)
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NHPP/Gamma/1 FIFO queue simulation



• Empirical density of            over 4,000 simulation replications
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NHPP/Gamma/1 FIFO queue simulation



• A trained NIM-VL model can generate 1,000 sequences of 1,000 learned 
NHPP interarrival times in roughly 0.85 seconds

– PyTorch
– Commodity 2019 MacBook Pro

• Training NIM-VL happens outside of simulation use, so training speed is 
not as crucial

• A priori knowledge about the distribution can be used to increase speed 
and accuracy

– NIM-VM
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Generation speed



• Conclusions:
– Neural networks are a powerful tool, and could potentially lower the barrier for usage 

of simulation
– NIM framework is promising for automatically capturing complex distributions and 

providing a means of sampling from those distributions
– NIM-VLis able to capture some complex distributions

• Future work:
– Formalizing theory
– Metrics for accuracy evaluation
– Alternate architectures (GANs, GRUs, etc)
– Testing our approach in more complex simulations
– Applications in privacy work
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Conclusions and Future Work
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Questions?

Emily A. Herbert
emilyherbert@cs.umass.edu

people.cs.umass.edu/~emilyherbert



• Kolmogorov-Smirnov statistic
– Multi-dimension statistic doesn’t capture complex patterns

• Anderson–Darling statistic
– Multi-dimension statistic doesn’t capture complex patterns

• Bootstrap statistic
– Unconventional
– (Baringhaus ‘01)

• Log-Likelihood metric
– Still thinking about this
– How do you retrieve the density function?

Goodness of fit statistic?
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• Currently thinking about this
• Universal approximation theorem:

– Multilayer feedforward networks are capable of approximating any measurable 
function

– (Hornik’91)
• For i.i.d. RV x with strictly increasing cdf F and a N(0,1) RV z, we have

• Thinking inverse transform for time-dependent processes
• Thinking about combining inverse transform with universal 

approximation theorem

Theory
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