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Approach to cloud computing…           without servers…             with servers
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What is serverless computing?
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What is serverless computing?

serverless.com/login
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• JavaScript is ill-suited for serverless computing
– Can consume a significant amount of time and memory
– Require an operating system sandbox

• These sandboxes incur slowdowns 1
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Problems with serverless computing

1 Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.Architectural Implications of Function-as-a-Service Computing. In 
IEEE/ACM International Symposium on Microarchitecture (MICRO)



• Boucher et al. present a serverless platform that runs functions written in 
Rust 2

• Leverages Rust’s language-level
guarantees to run multiple serverless
functions in one process
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Rust as an alternative

2 Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky. 2018. Putting the “Micro” back in microservices. In USENIX Annual 
Technical Conference (ATC).



• Rust is difficult to learn

• Rust’s safety alone is not strong enough for serverless computing
– CPU monopolization
– deadlocks
– memory leaks
– ...
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Rust as an alternative
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Containerless

• Serverless function accelerator

• Seeks to improve serverless computing performance

• Uses language-based isolation instead of container-based isolation
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Containerless

• Transforms JavaScript code to Rust code
by means of a traced-based intermediate representation

• Employs the Rust type system to ensure memory-safety
(language-based isolation)

• Runs serverless functions using the new language-based isolation

JavaScript trace IR Rust



• Why use a IR?

• Compiling directly would suffer from impedance mismatch
– Dynamic types v. static types
– Garbage collection v. explicit memory management
– Pointer aliasing
– ...
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Containerless



• Domain specific

• Utilizes common features of serverless functions
– idempotent
– short-lived

• Not a general purpose JavaScript to Rust compiler
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Containerless



Three general components:

1. JavaScript to IR

2. IR to Rust

3. invoker
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Components



• IR is trace-tree built over multiple executions of the function

• Similar to an execution trace, but a tree
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JavaScript to IR



Key features:

1. Functions

2. Closures (closure)

3. Unknown behavior (     )

4. Callbacks (cb) and events (event)
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JavaScript to IR



1. Instrument function with
trace-building runtime statements

14

JavaScript to IR



2. Execute function multiple times to build a trace tree

• Linked with library

• Builds incrementally

• Tree fragments are merged
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JavaScript to IR
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(incorrect password)

trace IR
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JavaScript to IR
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3. Produce trace IR!
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1. Transform callbacks in the trace IR to a state machine

2. Impose CPU and memory limits on the program

3. Inject all values into a dynamic type

4. Use arena allocation to resolve Rust lifetimes

5. Produce Rust code!
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IR to Rust
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Invoker

container-based isolation language-based isolation

invoker
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Invoker

container-based isolation language-based isolation

JS function
+

tracing
JS function JS function

JS function JS functionJS function

invokerrequestrequest request
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Invoker
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Invoker

container-based isolation language-based isolation

extract 
trace IR JS function JS function

JS function JS functionJS function

invoker
compile to Rust code

IR to Rust
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Invoker
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Invoker

container-based isolation language-based isolation
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Three general components:

1. JavaScript to IR

2. IR to Rust

3. invoker
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Containerless

Eliminates functions, etc.

Dynamic type, arena allocation, etc.

Manages language-based isolation
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Latency

all benchmarks authorize benchmark maze benchmark
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Utilization

CPU utilization memory utilization
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Thanks!


