
A Language-based Serverless Function Accelerator
Emily Herbert
Arjun Guha

Approach to cloud computing… without servers… with servers

2

What is serverless computing?

3

What is serverless computing?

serverless.com/login

eventevent

event

• JavaScript is ill-suited for serverless computing
– Can consume a significant amount of time and memory
– Require an operating system sandbox

• These sandboxes incur slowdowns 1

4

Problems with serverless computing

1 Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.Architectural Implications of Function-as-a-Service Computing. In
IEEE/ACM International Symposium on Microarchitecture (MICRO)

• Boucher et al. present a serverless platform that runs functions written in
Rust 2

• Leverages Rust’s language-level
guarantees to run multiple serverless
functions in one process

5

Rust as an alternative

2 Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky. 2018. Putting the “Micro” back in microservices. In USENIX Annual
Technical Conference (ATC).

• Rust is difficult to learn

• Rust’s safety alone is not strong enough for serverless computing
– CPU monopolization
– deadlocks
– memory leaks
– ...

6

Rust as an alternative

7

Containerless

• Serverless function accelerator

• Seeks to improve serverless computing performance

• Uses language-based isolation instead of container-based isolation

8

Containerless

• Transforms JavaScript code to Rust code
by means of a traced-based intermediate representation

• Employs the Rust type system to ensure memory-safety
(language-based isolation)

• Runs serverless functions using the new language-based isolation

JavaScript trace IR Rust

• Why use a IR?

• Compiling directly would suffer from impedance mismatch
– Dynamic types v. static types
– Garbage collection v. explicit memory management
– Pointer aliasing
– ...

9

Containerless

• Domain specific

• Utilizes common features of serverless functions
– idempotent
– short-lived

• Not a general purpose JavaScript to Rust compiler

10

Containerless

Three general components:

1. JavaScript to IR

2. IR to Rust

3. invoker

11

Components

• IR is trace-tree built over multiple executions of the function

• Similar to an execution trace, but a tree

12

JavaScript to IR

Key features:

1. Functions

2. Closures (closure)

3. Unknown behavior ()

4. Callbacks (cb) and events (event)

13

JavaScript to IR

1. Instrument function with
trace-building runtime statements

14

JavaScript to IR

2. Execute function multiple times to build a trace tree

• Linked with library

• Builds incrementally

• Tree fragments are merged

15

JavaScript to IR

16

request 1
(correct password)

request 2
(incorrect password)

trace IR

request

17

JavaScript to IR

request 1
(correct password)

request 2
(incorrect password)

trace IR

request

18

request 1
(correct password)

request 2
(incorrect password)

trace IR

request

3. Produce trace IR!

19

1. Transform callbacks in the trace IR to a state machine

2. Impose CPU and memory limits on the program

3. Inject all values into a dynamic type

4. Use arena allocation to resolve Rust lifetimes

5. Produce Rust code!

20

IR to Rust

21

Invoker

container-based isolation language-based isolation

invoker

22

Invoker

container-based isolation language-based isolation

JS function
+

tracing
JS function JS function

JS function JS functionJS function

invokerrequestrequest request

23

Invoker

container-based isolation language-based isolation

JS function JS function

JS function JS functionJS function

invokerrequestrequest request

JavaScript to IR

JS function
+

tracing

24

Invoker

container-based isolation language-based isolation

extract
trace IR JS function JS function

JS function JS functionJS function

invoker
compile to Rust code

IR to Rust

25

Invoker

container-based isolation language-based isolation

JS function JS function JS function

JS function JS functionJS function

Rust
function

Rust
function

Rust
function

Rust
function Rust

function

Rust
function

invoker requestrequest request

26

Invoker

container-based isolation language-based isolation

JS function JS function JS function

JS function JS functionJS function

Rust
function

Rust
function

Rust
function

Rust
function Rust

function

Rust
function

invoker requestrequest request
this is ok because
of idempotency

Three general components:

1. JavaScript to IR

2. IR to Rust

3. invoker

27

Containerless

Eliminates functions, etc.

Dynamic type, arena allocation, etc.

Manages language-based isolation

28

Latency

all benchmarks authorize benchmark maze benchmark

29

Utilization

CPU utilization memory utilization

30

Thanks!

